登录 | 注册

首页 | 学习中心 | 下载中心 | 知识大全 | 作文 | 常识 | 加入收藏 | 网站地图

您当前位置:多思学习网教育学习免费教案数学教案初三数学教案可化为一元二次方程的分式方程初中三年级教案

可化为一元二次方程的分式方程初中三年级教案

11-08 12:25:38初三数学教案
浏览次数:379次 
标签:初三数学上册教案,初三数学下册教案,http://www.duosi8.com 可化为一元二次方程的分式方程初中三年级教案,

 一、教学目标

  1.使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.

  2.通过本节课的教学,向学生渗透“转化”的数学思想方法;

  3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点.

  二、重点·难点·疑点及解决办法

  1.教学重点:可化为一元二次方程的分式方程的解法.

  2.教学难点:解分式方程,学生不容易理解为什么必须进行检验.

  3.教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性.

  4.解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解.(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤.(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0.

  三、教学步骤

  (一)教学过程

  1.复习提问

  (1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?

  (2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?

  (3)解方程,并由此方程说明解方程过程中产生增根的原因.

  通过(1)、(2)、(3)的准备,可直接点出本节的内容:可化为一元二次方程的分式方程的解法相同.

  在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量.

  在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力.

  2.例题讲解

  例1  解方程.

  分析  对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程中,发现问题并及时纠正.

  解:两边都乘以,得

  

  去括号,得

  

  整理,得

  

  解这个方程,得

  

  检验:把代入,所以是原方程的根.

  ∴  原方程的根是.

  虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间比较长,所以有一些学

  生容易犯的类型错误应加以强调,如在第一步中.需强调方程两边同时乘以最简公分母.另

  外,在把分式方程转化为整式方程后,所得的一元二次方程有两个相等的实数根,由于是解

  分式方程,所以在下结论时,应强调取一即可,这一点,教师应给以强调.

  例2  解方程

  分析:解此方程的关键是如何将分式方程转化为整式方程,而转化为整式方程的关键是

  正确地确定出方程中各分母的最简公分母,由于此方程中的分母并非均按的降幂排列,所

  以将方程的分母作一转化,化为按字母终X进行降暴排列,并对可进行分解的分母进行分解,从而确定出最简公分母.

  解:方程两边都乘以,约去分母,得

  

  整理后,得

  解这个方程,得

  检验:把代入,它不等于0,所以是原方程的根,把

  代入它等于0,所以是增根.

  ∴   原方程的根是

  师生共同解决例1、例2后,教师引导学生与已学过的知识进行比较.
,可化为一元二次方程的分式方程初中三年级教案

联系我们 | 网站地图 | 幼教大全 | 试题下载 | 电脑学习 | 加入收藏


幼儿园教案_ 教案模板_ 课件模板_ 教学反思_ 教学计划


多思学习网 1 2 3 4 5 6